Smart Energy Monitoring Network

May 1725 Adviser: Nathan Neihart Client: Commercial Product

Joey Freeland Team Co-Lead

> Software Designer

Adam Cha Communications Team Lead

Case

Designer

WohApp

Adam Dau

Webmaster

WebApp Constructor Wei LinLin Concept Holder

Database

Developer

James Tran Concept Holder Milan Patel Team Co-Lead

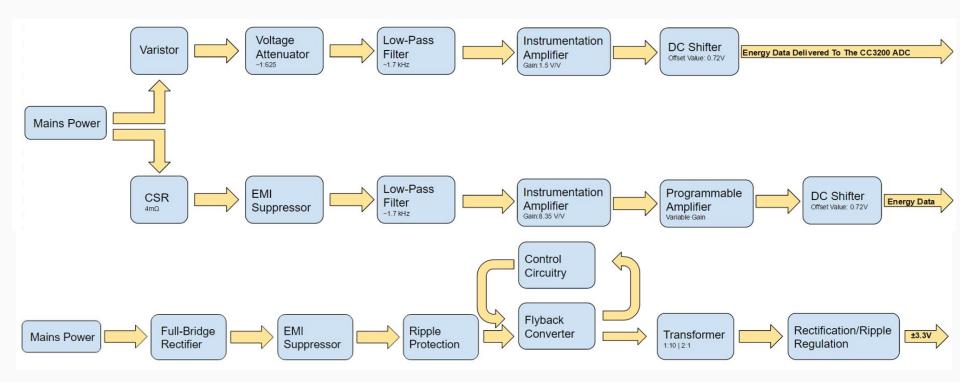
Hardware Designer Hardware Designer

Mission statement:

To make a wireless power sensor that can monitor the power usage of different electronic devices and report that power usage back to the user via a user-friendly web application.

Why now?

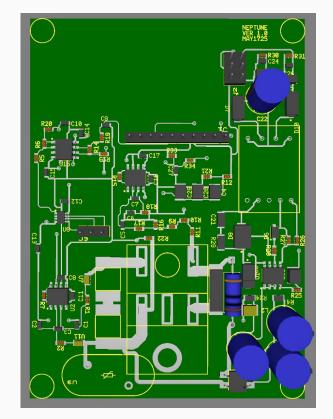
With the "Smart House" becoming more and more popular, as well as the world becoming more environmentally friendly. Our product satisfies the clientele in these two markets.


Hardware Requirements

Functional:

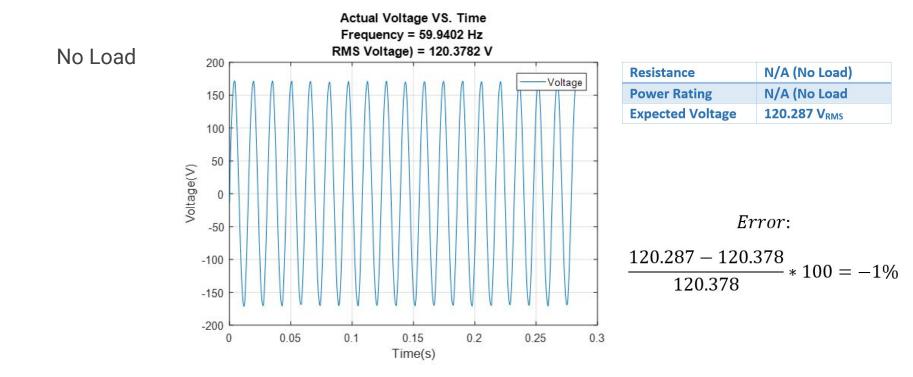
- Power Consumption Under 5W
- Operate with current magnitudes ranging from 100mA - 15A RMS
- Provide output with minimal frequency modulation

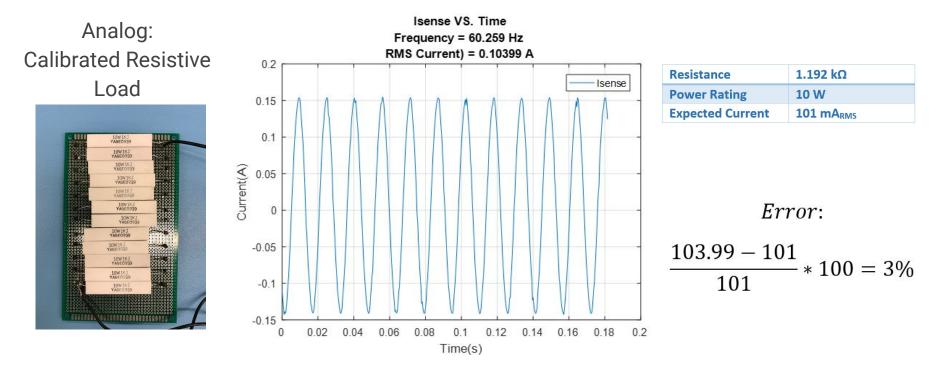
Non-Functional:


- NEMA 5, or equivalent housing
- Non-intrusive to other objects on the outlet
- Negligible Audible Noise

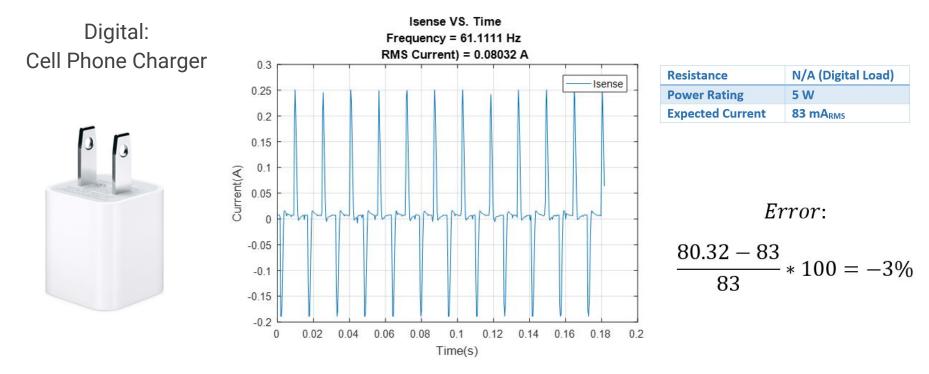
Hardware Block Diagram

PCB layout

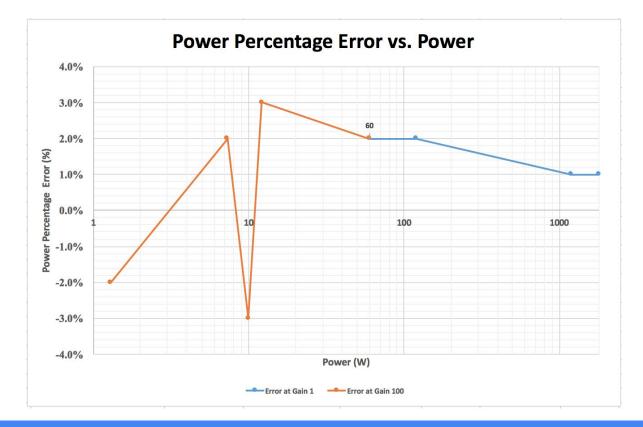



Implementation

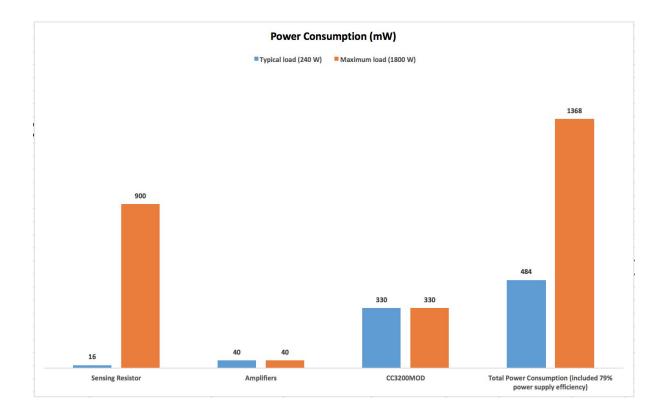
Testing Voltage Sensing


Testing

Testing Known Load



Testing Known Load


Testing

Power Percentage Error

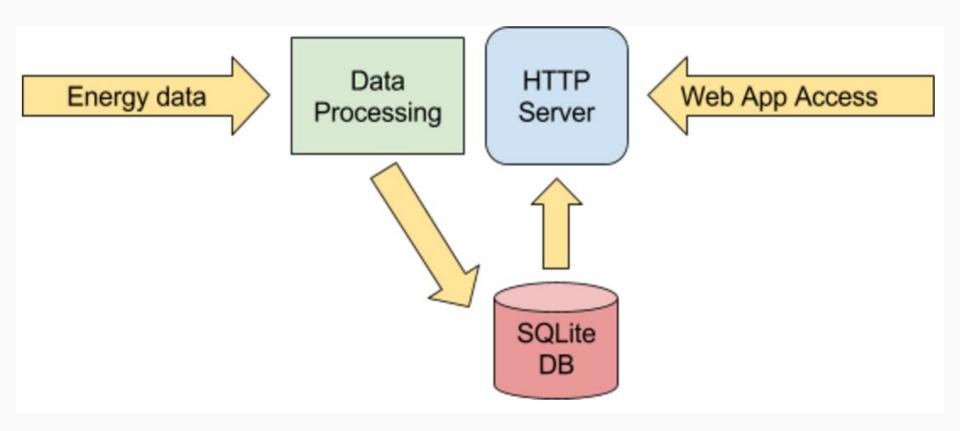
Result

Device Power Consumption

Result

Software Requirements

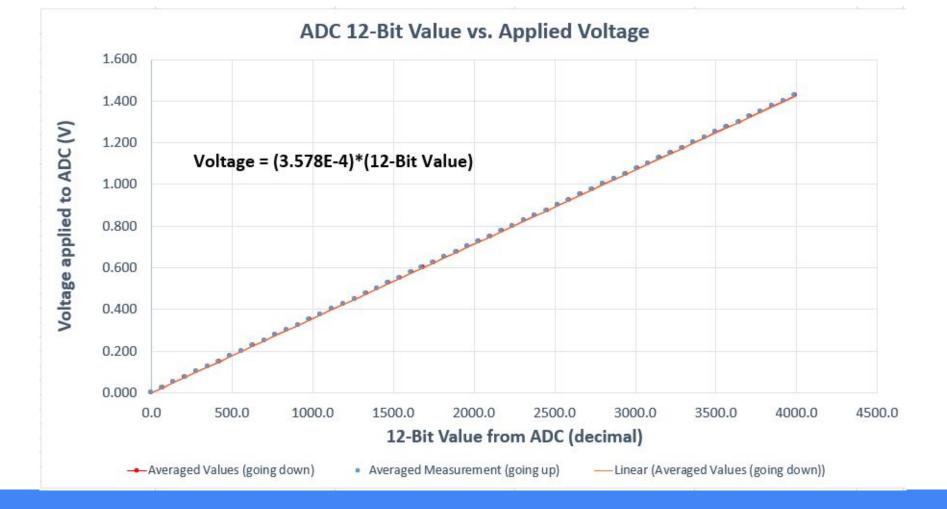
Functional:


- Web application shall retrieve it's data from a central database.
- Web application shall allow the user to change the period of energy data collection
- Web application shall show a list of all connected monitoring systems
- Web application shall allow the user to give each station a user-friendly name

Non-Functional:

- Web app should be modern and well-designed, with a sensible UI.
- Web app should have easy to use buttons and controls for the UI.
- Web app should have easy access to different monitoring stations.

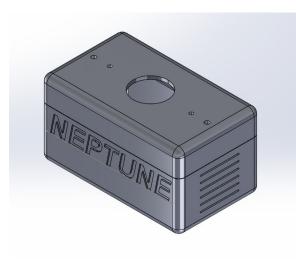
Software Design

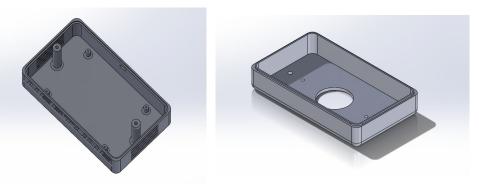

- Each sensor has a WiFi enabled microcontroller
 - Texas Instruments CC3200
 - 32-bit ARM core
- Data is sent from each sensor to a central hub
 - Connection is UDP-based
 - Sensor samples are stored in a central database
- Central hub hosts a web server accessible from any device
 - Web application is mobile-friendly
 - User has the option to create graphs

Network Block Diagram

Software Technology Platforms

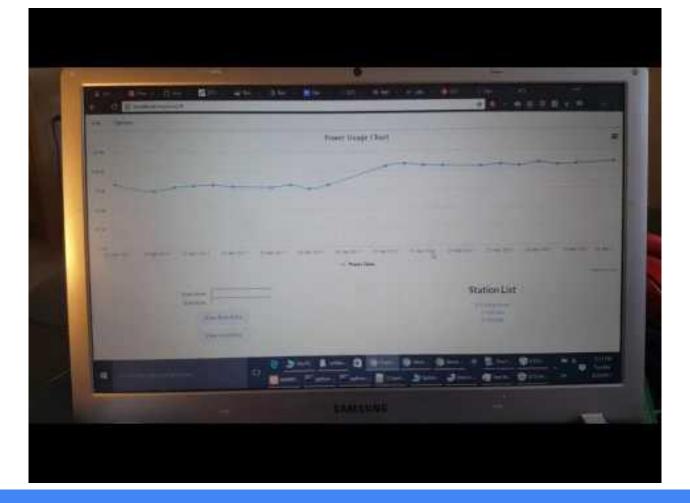
- Code Composer Studio
 - Free version of IDE from Texas Instruments
- SQLite
 - Connectionless database fits our lightweight model
 - Stores all past sensor measurements
- Python
 - Runs on central hub to provide sensor connection and web application




Website Screenshot

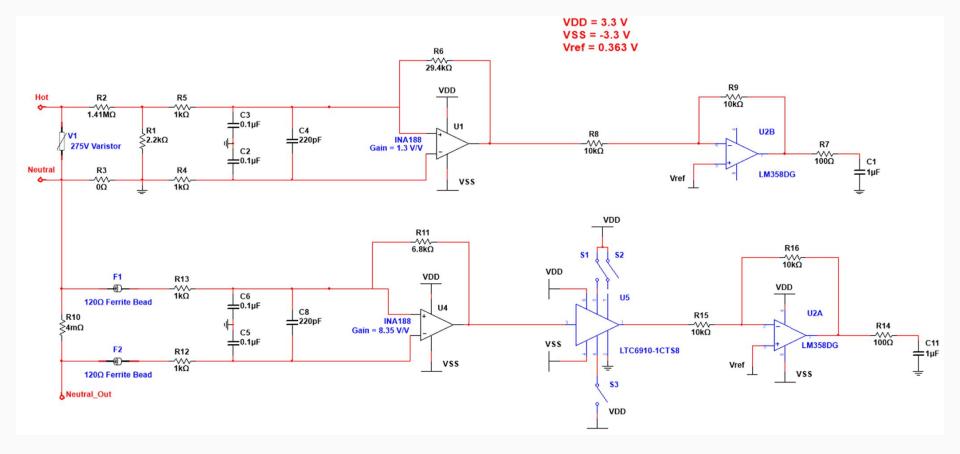
Case

- Designed using SolidWorks 2016
- Fabricated using the Form 2 SLA 3D Printer
- Uses "tough" 3D printing material
- Houses an outlet for power connection, the PCB, and the CC3200 microcontroller
- Provides safety for the user from wires and contacts on the PCB
- Ventilation designed for dissipating any heat



Device Cost Summary

РСВ	\$12
CC3200MOD	\$11
Passive Components	\$24
Active Components	\$9
Case and Miscs	\$50
Total	\$106



Questions?

Appendix

REST API (Database Server)

E power: 3.600853497959622, station id: "1", id: 1, timestamp: 0 name: "Living Room" }, }, - { power: 9.868210043072839, station id: "1", id: 2, timestamp: 1 name: "Kitchen" }, }, - { - { power: 9.078286273047317, station id: "1", id: 3, timestamp: 2 name: "Garage" }, } - { power: 6.427535907109449, station id: "1", timestamp: 3 },

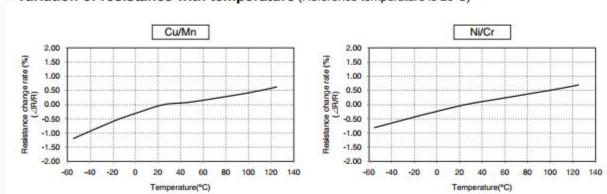
Hardware Schematic

Quantity -1	Description	RefDes	Package	Price	Total	Cost 🔽
1	RESISTOR, 2.2kΩ	R16	IPC-7351\Chip-R0603	\$	0.10 \$	0.10
1	RESISTOR, 29.4kΩ	R15	IPC-7351\Chip-R0603	\$	0.12 \$	0.12
1	RESISTOR, 6.8kΩ	R7	IPC-7351\Chip-R0603	\$	0.10 \$	0.10
1	RESISTOR, 41.2kΩ	R12	IPC-7351\Chip-R0603	\$	0.12 \$	0.12
1	RESISTOR, 5.1kΩ	R21	IPC-7351\Chip-R0603	S	0.10 \$	0.10
1	Varistor, S20K275	U3	Ultiboard/VAR S20K230	\$	0.95 \$	0.95
1	RESISTOR, 0Ω	R22	IPC-7351\Chip-R0603	S	0.10 \$	0.10
1	OPAMP, LTC6910-1CTS8	U8	IPC-7351\TSOT23-8	S	2.79 \$	2.79
1	OPAMP, LM358DG	U15	ON Semiconductor/SOIC-8-8(CASE 751-07		0.47 \$	0.47
1	CAPACITOR, 0.22µF	C27	IPC-7351\Chip-C0603	S	0.10 \$	0.10
1	RESISTOR, 200kΩ	R33	IPC-7351\Chip-R0603	S	0.10 \$	0.10
1	RESISTOR, 1kΩ	R34	IPC-7351\Chip-R0603	\$	0.10 \$	0.10
1	INDUCTOR, 10mH	LI	IPC-2221A/2222\CAPPR350-800X1150	S	0.29 \$	0.29
1	INDUCTOR, 10µH	1.2	IPC-7351\Chip-L1210	S	0.26 \$	0.26
1	MOSFET DRIVER, UCC27325 SO8	UI	IPC-7351\SOIC-D-8	S	1.59 \$	1.59
1	RESISTOR, 2.7kΩ	R25	IPC-7351\Chip-R0603	S	0.10 \$	0.10
1	CAPACITOR, 10µF	C20	IPC-7351\Chip-C1210	S	0.86 \$	0.86
i	RESISTOR, 30kΩ	R26	IPC-7351\Chip-R0603	Š	0.10 \$	0.10
1	RESISTOR, 100kΩ	R27	IPC-7351\Chip-R0603	s	0.10 \$	0.10
i	RESISTOR, 120Ω	R28	IPC-7351\Chip-R0603	S	0.10 \$	0.10
1	SWITCHING DIODE, BAS21H	D6	NXP Semiconductors\SOD-123-2(SOD123F		0.19 \$	0.19
i	DIODE, 1N4004G	D2	ON Semiconductor/SMA-2(CASE 403D-02F		0.47 \$	0.47
1	RESISTOR, 1.5kQ	R29	IPC-7351\Chip-R1206	S S	0.47 \$	0.47
1	CAPACITOR, 100pF	C21	IPC-7351\Chip-C1206	S	0.31 \$	0.31
1	PROTECTION DIODE, 1SMB170AT3		ON Semiconductor/SMB-2(CASE 403A-030		0.31 \$	0.31
1	SCHOTTKY DIODE, 1N5822G	D7	ON Semiconductor/SMA-2(CASE 403A-03C		0.40 \$	0.40
1		C22		·) 5 S		
1	CAP ELECTROLIT, 820µF		IPC-2221A/2222\CAPPR350-800X1150		0.67 \$	0.67
1	CAPACITOR, 10µF	C23 C25	IPC-7351\Chip-C1206	\$	0.25 \$	0.25
	CAPACITOR, 100µF		IPC-7351\Chip-C1206	\$	0.74 \$	0.74
1	SCHOTTKY DIODE, MBR3100RLG	D10	ON Semiconductor/SMA-2(CASE 403D-02F		0.60 \$	0.60
1	RESISTOR, 10Ω	R32	IPC-2221A/2222\RES1600-1000X400	\$	0.72 \$	0.72
1	Transformer, XMFR314752	013	Ultiboard\XMFR314752	S	7.63 \$	7.63
1	GENERIC, HDR2X3	32	Generic\HDR2X3	S	0.25 \$	0.25
1	MB6S	U14	Ultiboard\MB6S	\$	0.38 \$	0.38
1	GENERIC, HDR1X3	J3	Generic\HDR1X3	\$	0.25 \$	0.25
1	GENERIC, HDR1X10	J1	Generic\HDR1X10	\$	0.50 \$	0.50
1	CC3200MOD	U11	MCU	S	10.63 \$	10.63
2	CAPACITOR, 220pF	C3, C7	IPC-7351\Chip-C0603	\$	0.11 \$	0.22
2	Instrumentation, INA188	U2, U4	IPC-7351\SOIC-8	\$	2.08 \$	4.16
2	RESISTOR, 2mΩ	R3, R8	Ultiboard\RES3921	\$	2.21 \$	4.42
2	RESISTOR, 100Ω	R19, R20	IPC-7351\Chip-R0603	\$	0.10 \$	0.20
2	CAPACITOR, 1µF	C9, C10	IPC-7351\Chip-C0603	\$	0.19 \$	0.38
2	BLM21BD121SN1, BLM21BD121SN	1 D 7, U11	IPC-7351\Chip-L0805	\$	0.15 \$	0.30
2	CAP ELECTROLIT, 4.7µF	C18, C19	IPC-2221A/2222\CAPPR350-800X1150	\$	0.48 \$	0.96
2	RESISTOR, 6.8kΩ	R4, R24	IPC-7351\Chip-R0805	\$	0.10 \$	0.20
2	CAPACITOR, 0.1µF	C24, C26	IPC-7351\Chip-C0603	\$	0.10 \$	0.20
2	RESISTOR, 2kΩ	R30, R31	IPC-7351\Chip-R0603	S	0.10 \$	0.20
3	RESISTOR, 470kΩ	R9, R10, R11	IPC-7351\Chip-R0603	\$	0.10 \$	0.30
3	CAPACITOR, 100µF	C4, C28, C29	IPC-7351\Chip-C1210	\$	0.74 \$	2.22
4	CAPACITOR, 0.1µF	C1, C2, C5, C6	IPC-7351\Chip-C0603	\$	0.10 \$	0.40
4	RESISTOR, 1kΩ	R1, R2, R17, R18	IPC-7351\Chip-R0603	\$	0.10 \$	0.40
4	RESISTOR, 10kΩ	R5, R6, R13, R14	IPC-7351\Chip-R0603	S	0.10 \$	0.40
8	CAPACITOR, 0.1µF	C8, C11, C12, C13, C14, C15, C16, C17	IPC-7351\Chip-C0603	S	0.10 \$	0.80.

Bill of Materials

Actual Current	Error at G1	Error at G10	Error at G100
10.8 mA _{RMS}	354%		-2%
60.6 mA _{RMS}	42%	7%	2%
83 mA _{RMS}	12%	-4%	-3%
101 mA _{RMS}	10%	5%	3%
0.5 mA _{RMS}	8%	3%	
1 A _{RMS}	5%		
10 A _{RMS}	-4%		
Actual Voltage		Error	he.
120.287 V _{RMS}		1%	

Error Summary


Current Software Status

- CC3200 SDK working and example code running
 - Connected to WiFi network and pinged external website
 - ADC is running
- UDP Transmission of sensor data
 - CC3200 sends a UDP packet over the WiFi to the central hub
 - Packet is received by Python UDP server and inserted into the database

	Type of Enclosure														
Provides a Degree of Protection Against the Following Conditions	1.	2*	4	4X	5	6	6P	12	12K	13					
Access to hazardous parts	X	X	X	Х	х	X	X	X	X	X					
Ingress of solid foreign objects (falling dirt)	x	x	x	x	х	x	x	x	x	X					
Ingress of water (Dripping and light splashing)		х	x	x	х	x	x	x	X	X					
Ingress of solid foreign objects (Circulating dust, lint, fibers, and flyings **)			X	X		X	X	X	X	X					
Ingress of solid foreign objects (Settling airborne dust, lint, fibers, and flyings **)			X	X	X	X	x	X	x	X					
Ingress of water (Hosedown and splashing water)			x	X		X	X								
Oil and coolant seepage								X	X	X					
Oil or coolant spraying and splashing										X					
Corrosive agents				x			x								
Ingress of water (Occasional temporary submersion)						X	x								
Ingress of water (Occasional prolonged submersion)	1000						X								

Ge	eneral
Dimensions	5 x 3 x 3.5 inches
Plug options	US, 15 Amp
Color	White
Enclosure	NEMA 5 Rating
Operating Temprature (°C)	-20 < T < 85
Storage Temprature (°C)	-40 < T <125
Radio	
-Sensitivity	-74 dBm minimum
-Output Power	14.5 dBm minimum
Power Supply	120 V(RMS)
Power Consumption (Typ.)	1 W
Fu	nctions
Power Meter	h Constant and the second s
-Voltage Range	120 V(RMS)
-Current Range	100 mA - 15A(RMS)
-Accuracy	Typ +/- 5.0%
-Voltage Sensitivity (Typ.)	133mA/V
-Resolution	0.342mV/bit
-Auto-Ranging Threshold	1.2 V

Technical Specifications

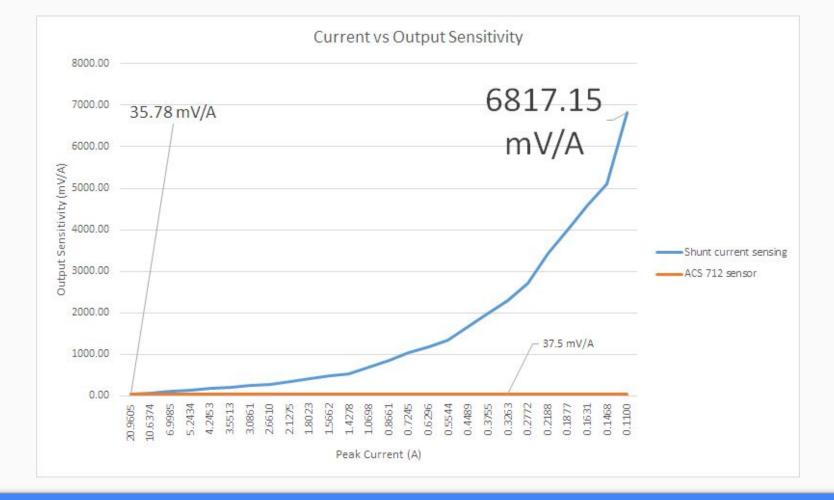
Variation of resistance with temperature (Reference temperature is 20°C)

Part No.	L	W	н	b	Resistance	t	Material	Vin (V)	V_resistor (V)	I_resistor (A)	R (Ω)	
			1993	2.55		22		0.001	0.000127	0.03	0.004233333	
					0.3mΩ	1.85±0.15		0.01	0.000601	0.147	0.004088435	
					0.5mΩ	1.30±0.15	Cu/Mn	0.02	0.00118	0.275	0.004290909	
PSR400	10±0.3	5.2±0.3	0.5±0.1	2.0±0.6	1.0mΩ	0.90±0.15		0.03	0.001649	0.406	0.004061576	
- SILLOO		0.220.0	0.02.0.1			0.000.00.0		0.04	0.00217	0.534	0.00406367	
					2.0mΩ	1.15±0.15	Ni/Cr	0.05	0.002704	0.666	0.00406006	
					3.0mΩ	0.90±0.15		3 5 (5	2		0.004132997	Average Resistan

Resistor Characterization

Project Neptune - Timel			2016													2017																											
			AUG				SEP	· · · · · · ·		oct	r			NOV	(DEC					JAN				FEB				MAR				APR				I	IAY			
Deliverables		Duration	W1 W2	2 W3	W4	W5	W1	W2 1	W3 W4	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4	W5	W1	W2	W3 V	W4	W1	W2	W3	W4	W1	W2 1	N3	W4	W1	W2	W3 V	W4	W5 V	V1 V	N2 1	W3	W4
Plug-in Adapter to Measure Energy	gy Usage	<u>37w</u>																																									
		Week #	1990 - 1990 1990 - 1990		1	2	3	4	5 6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	-		
		Milestone									1		2		3			4								5																	
Planning phase	10.1	3 w			-																																						
Project Conception	Task I	2 w																																			_	_		_			
Advisor Assignment	Task II	1w								_																_																	
Project Assignment/Approval	Task III	3 w		_						16							_	~				_	-						_			_								_	_		
										0			-	J.									100				4																
Research phase		8 w				2																																					
Research Power Measurement	Task I	3 w						l, l		-																																	
Research Components	Task II	5 w								1																																	
Construct Block Diagram	Task III	3 w					1																																				
Set Specifications	Task IV	2 w		-		-		_	_	-				-	-	-	_		_		_	_	-	_	_		_		_	_		_	_			_	_	_	_	_			
Prototype phase (Analog)		14 w				-	(e							-															-			-	_	_	-	_	_	_		-	-	_	
Design PCB	Task I	4 w			-					÷.			-						_	_	_	_		_	_		1					_											
Order Components	Task II	2 w																													1												
Fabricate	Task III	2 w																																									
Test	Task IV	2 w						_	_	-0			_	-	-	-					_		-	_			_	_	_	_		_		_					_				
Prototype phase (Software)		14 w				-	(g.	_						2	-														_			-	_	_	*:		_	_		_	-	_	
Setup database schema	Task I	2 w								1								-							_																		
Setup HTTP Server	Task II	2 w																																									
Develop data collection code	Task III	2 w					1																																				
Develop UI (Front end)	Task IV	2 w								-0-					-						_		-	_				_						_									
Closure phase		3 w					<u>.</u>		-		-													-			(a)						_	_					-	-	-	_	_
Documentation	Task I	3 w																		-	-	-			_																		
Final Presentation Preparation	0.000									-			-		-	-					_																						
Annotations				-	-				_		1	Proje	ect Plan	n Rev	1 Due							_					_				-		_	_		_		_	_	-	-		_
											-	, ruju	2)ocume	ent Re	v. 1 D	ue																								
															3	Projec	t Plan	Rev. 2	2 Due																								
																		4	Final	Projec	t Plan	8. Des	sign Do	amer	ts Due																		
(L.L.																										5	Funct	ioning	Protot	ype													

Risks


- 1. Electric Shock/Surges
- 2. Damaging Excessive Steady Current
- 3. Accuracy
- 4. Multi-Device Communication

Mitigations

- 1. Capacitive & Diode Protection Circuitry
- 2. Time Delayed 15A Fuses
- 3. Auto-Ranging Gain
- 4. UDP

Milestones

	•	Functioning Separat Prototypes	ite				May 201 Final Submis	
Dec	Jai	n Feb)	Mar	Ar	Dr	Мау	
Current Status Nearly Functional Separate Prototypes				Feb 2016 Functioning Prototype Device		Apr 2016 Refinement/Deb Complete	bugging	

